Modeling of surface tension and contact angles with smoothed particle hydrodynamics.

نویسندگان

  • Alexandre Tartakovsky
  • Paul Meakin
چکیده

A two-dimensional numerical model based on smoothed particle hydrodynamics (SPH) was used to simulate unsaturated (multiphase) flow through fracture junctions. A combination of standard SPH equations with pairwise fluid-fluid and fluid-solid particle-particle interactions allowed surface tension and three-phase contact dynamics to be simulated. The model was validated by calculating the surface tension in four different ways: (i) from small-amplitude oscillations of fluid drops, (ii) from the dependence of the capillary pressure on drop radius, (iii) from capillary rise simulations, and (iv) from the behavior of a fluid drop confined between parallel walls under the influence of gravity. All four simulations led to consistent values for the surface tension. The dependence of receding and advancing contact angles on droplet velocity was studied. Incorporation of surface tension and fluid-solid interactions allowed unsaturated flow through fracture junctions to be realistically simulated, and the simulation results compare well with the laboratory experiments of Dragila and Weisbrod.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

‎Incompressible ‎smoothed particle hydrodynamics simulations on free surface flows

‎The water wave generation by wave paddle and a freely falling rigid body are examined by using an Incompressible Smoothed Particle Hydrodynamics (ISPH)‎. ‎In the current ISPH method‎, ‎the pressure was evaluated by solving pressure Poisson equation using a semi-implicit algorithm based on the projection scheme and the source term of pressure Poisson equation contains both of divergence free ve...

متن کامل

Numerical Investigation of Vertical and Horizontal Baffle Effects on Liquid Sloshing in a Rectangular Tank Using an Improved Incompressible Smoothed Particle Hydrodynamics Method

Liquid sloshing is a common phenomenon in the transporting of liquid tanks. Liquid waves lead to fluctuating forces on the tank wall. If these fluctuations are not predicted or controlled, they can lead to large forces and momentum. Baffles can control liquid sloshing fluctuations. One numerical method, widely used to model the liquid sloshing phenomena is Smoothed Particle Hydrodynamics (SPH)....

متن کامل

Investigating the Third Order Solitary Wave Generation Accuracy using Incompressible Smoothed Particle Hydrodynamics

This paper examines the generation and propagation of a Third order solitary water wave along the channel. First the Incompressible Smoothed Particle Hydrodynamics (ISPH) numerical method is described and the boundary condition handling method is presented. The numerical model is then used to simulate solitary wave propagation along the fixed depth channel. The numerical results are compared wi...

متن کامل

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

Numerical Simulation of Squeezed Flow of a Viscoplastic Material by a Three-step Smoothed Particle Hydrodynamics Method

In the current work, the mesh free Smoothed Particle Hydrodynamics (SPH) method, was employed to numerically investigate the transient flow of a viscoplastic material. Using this method, large deformation of the sample and its free surface boundary were captured without the cumbersome process of the grid generation. This three-step SPH scheme employs an explicit predictor-corrector technique an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 72 2 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2005